Solving the Two Dimensional Cutting Problem using Evolutionary Algorithms with Penalty Functions
نویسنده
چکیده
In this work a solution using evolutionary algorithms with penalty function for the non-guillotine cutting problem is presented. In this particular problem, the rectangular pieces have to be cut from an unique large object, being the goal to maximize the total value of cut pieces. Some chromosomes can hold pieces to be cut, but some pieces cannot be arranged into the object, generating infeasible solutions. A way to deal with this kind of solutions is to use a penalizing strategy. The used penalty functions have been originally developed for the knapsack problem and they are adapted for the cutting problem in this paper. Moreover, the effect on the algorithm performance to combine penalty functions with two different selection methods (binary tournament and roulette wheel) is studied. The algorithm uses a binary representation, one-point crossover, big-creep mutation and in order to evaluated the quality of solutions a placement routine is considered (Heuristic with Efficient Management of Holes). Experimental comparisons of the performance of the resulting algorithms are carried out using publicly available benchmarks to the non-guillotine cutting problem. We report on the high performance of the proposed models at similar (or better) accuracy with respect to existing algorithms.
منابع مشابه
Solving the Economic Load Dispatch Problem Considering Units with Different Fuels Using Evolutionary Algorithms
Nowadays, economic load dispatch between generation units with least cost involved is one of the most important issues in utilizing power systems. In this paper, a new method i.e. Water Cycle Algorithm (WCA) which is similar to other intelligent algorithm and is based on swarm, is employed in order to solve the economic load dispatch problem between power plants. In order to investigate the eff...
متن کاملSolving an one-dimensional cutting stock problem by simulated annealing and tabu search
A cutting stock problem is one of the main and classical problems in operations research that is modeled as Lp < /div> problem. Because of its NP-hard nature, finding an optimal solution in reasonable time is extremely difficult and at least non-economical. In this paper, two meta-heuristic algorithms, namely simulated annealing (SA) and tabu search (TS), are proposed and deve...
متن کاملComparison of particle swarm optimization and tabu search algorithms for portfolio selection problem
Using Metaheuristics models and Evolutionary Algorithms for solving portfolio problem has been considered in recent years.In this study, by using particles swarm optimization and tabu search algorithms we optimized two-sided risk measures . A standard exact penalty function transforms the considered portfolio selection problem into an equivalent unconstrained minimization problem. And in final...
متن کاملAn Algorithm for Two Dimensional Cutting Stock Problems with Demand
In this paper, two-dimensional cutting stock problem with demand has been studied.In this problem, cutting of large rectangular sheets into specific small pieces should be carried out hence, the waste will be minimized. Solving this problem is important to decrease waste materials in any industry that requires cutting of sheets. In most previus studies, the demand of pieces has not been usually...
متن کاملAn Algorithm for Two Dimensional Cutting Stock Problems with Demand
In this paper, two-dimensional cutting stock problem with demand has been studied.In this problem, cutting of large rectangular sheets into specific small pieces should be carried out hence, the waste will be minimized. Solving this problem is important to decrease waste materials in any industry that requires cutting of sheets. In most previus studies, the demand of pieces has not been usually...
متن کامل